HIV-1 group O integrase displays lower susceptibility to raltegravir and has a different mutational pathway for resistance than HIV-1 group M
نویسندگان
چکیده
INTRODUCTION HIV-1 group O (HIV-O) is a rare HIV-1 variant characterized by a high number of polymorphisms, especially in the integrase gene, e.g. positions L74I, S153A, G163Q and T206S. As HIV-O integrase enzymes have not previously been studied, our aim was to assess the impact of HIV-O integrase polymorphisms on susceptibility to integrase inhibitors and emergence of resistance associated mutations. Viruses and Methods: We cloned and purified integrase proteins from each of HIV-1 Group O clades A (HIV-O/A) and B (HIV-O/B), a HIV-O divergent strain (HIV-O/Div), and HIV-1 group M (subtype B, HIV-M/B) and characterized these enzymes for susceptibility to integrase strand transfer inhibitors (INSTIs) in cell-free assays and in tissue culture, in the absence or presence of varying concentrations of several INSTIs. The inhibition constant (Ki) and IC50 were calculated and compared for HIV-M and HIV-O integrases. Selections for resistance-related mutations were performed using cord blood mononuclear cells and increasing concentration of INSTIs. RESULTS HIV-O integrase and viruses were more susceptible to raltegravir (RAL) in competitive inhibition assays and in tissue culture than were HIV-M enzymes and viruses, respectively. During selection, we observed different pathways of resistance depending on the drug and clade. Mutations selected in HIV-O can be classified as follows: (1) mutations described for HIV-M such as T97A, Q148R, V151A/I (RAL), T66I, E92Q, E157Q (EVG) and M50I, R263K (DTG) and (2) signature mutations for HIV-O (i.e. not described in HIV-M) F121C (HIV-O/B for RAL), V75I (HIV-O/A for RAL) and S153V (HIV-O/A for DTG). Only the HIV-O/Div selected the Q148R mutation for RAL and R263K+M50I for DTG, as previously described for HIV-M. None of the HIV-O viruses selected either N155H or Y143C. The selection of the specific S153V mutation could be explained at the nucleotide level: HIV-O at this position contains an alanine and substitution of alanine to valine (153AGGC→153VGTC) is easier than substitution of alanine to tyrosine (153AGGC→153YTAC), with only a transversion needed instead of one transition plus one transversion. CONCLUSIONS This is the first report of susceptibility and resistance in vitro to INSTIs for HIV-O. Our study confirmed the impact of HIV-O polymorphism, on susceptibility to INSTIs and the emergence of resistance mutations.
منابع مشابه
Three Main Mutational Pathways in HIV-2 Lead to High-Level Raltegravir and Elvitegravir Resistance: Implications for Emerging HIV-2 Treatment Regimens
Human immunodeficiency virus type 2 (HIV-2) is intrinsically resistant to non-nucleoside reverse transcriptase inhibitors and exhibits reduced susceptibility to several of the protease inhibitors used for antiretroviral therapy of HIV-1. Thus, there is a pressing need to identify new classes of antiretroviral agents that are active against HIV-2. Although recent data suggest that the integrase ...
متن کاملDiscordant predictions of residual activity could impact dolutegravir prescription upon raltegravir failure.
BACKGROUND Dolutegravir is approved for the treatment of HIV-1 patients exposed to other integrase inhibitors, but the decision to use dolutegravir in this setting should be informed by drug resistance testing. OBJECTIVES This study determined the extent of disagreement in predicted residual dolutegravir activity after raltegravir use, and identified individual mutational patterns for which u...
متن کاملImplications of HIV-1 M group polymorphisms on integrase inhibitor efficacy and resistance: genetic and structural in silico analyses.
The extensive polymorphisms among HIV-1 subtypes have been implicated in drug resistance development. Integrase inhibitors represent the latest addition to the treatment of HIV-1, and their efficacy and resistance patterns among M group strains are currently under investigation. This study analyzed the intersubtype variation within 108 integrase sequences from seven subtypes. The residues assoc...
متن کاملHIV resistance to raltegravir
Similar to all antiretroviral drugs, failure of raltegravir-based treatment regimens to fully supress HIV replication almost invariably results in emergence of HIV resistance to this new drug. HIV resistance to raltegravir is the consequence of mutations located close to the integrase active site, which can be divided into three main evolutionary pathways: the N155H, the Q148R/H/K and the Y143R...
متن کاملHIV-2 Integrase Polymorphisms and Longitudinal Genotypic Analysis of HIV-2 Infected Patients Failing a Raltegravir-Containing Regimen
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2014